Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 36(9): 1641-1651, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34995144

RESUMO

The rotary jet spinning technique permits the production of biomaterials that can be used as devices that come into contact with biological systems (including biological fluids) for diagnostic or surgical applications. These materials are composed of synthetic or natural compounds and allow the incorporation of drugs for therapeutic purposes. Two solutions containing 50% poly(lactic acid) (PLA) and 50% poly(ε-caprolactone) (PCL) diluted in three different solvents were prepared for rotary jet spinning (RJS) process. Vancomycin, an antibiotic indicated for the treatment of severe staphylococcal infections in patients with penicillin allergy, was added in the polymer solutions, to obtain drug-loaded fibrous mats. Morphological surface characterization by scanning electron microscopy revealed heterogeneous pores in the microfibers. Vancomycin loading interfered with the morphology of all samples in terms of fiber size, leading to smaller diameter fibers. Attenuated total reflectance/Fourier transform infrared spectroscopy was used for identification of the samples. The vibrational characteristics of PCL/PLA and vancomycin were consistent with expectations. Vero cell culture assays by the extract dilution and direct contact methods revealed the absence of cytotoxicity, except for the sample prepared with 50% of PCL and of a 9/2 (V/V) vancomycin content, with the growth of confluent and evenly spread cells on the fibrous mats surface. Microbiological analysis, performed on Staphylococcus aureus by the halo inhibition test and by the broth dilution method, showed that the antibacterial activity of vancomycin was maintained by the loading process in the polymer fibers. The results showed that rotary jet spinning produces satisfactory amounts of Vancomycin-loaded fibers, as potential web dressing for wound repair.


Assuntos
Anti-Infecciosos , Nanofibras , Bandagens , Humanos , Ácido Láctico , Nanofibras/química , Poliésteres/química , Polímeros/química , Alicerces Teciduais/química , Vancomicina/química
2.
RSC Adv ; 10(61): 36980-36987, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521283

RESUMO

Confined and interstitial water has a key role in several chemical, physical and biological processes. It is remarkable that many aspects of water behavior in this regime (e.g., chemical reactivity) remain obscure and unaddressed. In particular for gold surfaces, results from simulations indicated that the first wetting layer would present hydrophilic behavior in contrast to the overall hydrophobic character of the bulk water on this surface. In the present work we investigate the properties of confined water on Au 〈111〉 nanochannels. Our findings, based on a large set of morphological, structural and spectroscopic experimental data and ab initio computer simulations, strongly support the hypothesis of hydrophilicity of the first wetting layer of the Au 〈111〉 surface. A unique oxidation process was also observed in the nanochannels driven by confined water. Our findings indicated that the oxidation product is Au(OH)3. Therefore, the Au surface reactivity against confined water needs to be considered for nanoscopic applications such as, e.g., catalysis in fine chemicals, pharmaceuticals, and the food industry green processes.

3.
Eur J Oral Sci ; 126(1): 53-65, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29130564

RESUMO

This study investigated the effect of application of non-thermal atmospheric plasma (NTAP) on the topography and composition of the dentin surface, as well as the microtensile bond strength (µTBS) of a universal adhesive to NTAP-treated dentin. Exposed flat dentin surfaces from human third molars were either treated with NTAP for 10 and 30 s or untreated (control). The dentin-surface topography and chemical composition were characterized by atomic force microscopy (n = 3) and Raman confocal spectroscopy (n = 5), respectively. The µTBS (n = 8) of Scotchbond Universal to dentin was determined after storage for 24 h and 1 yr, either by direct water exposure or under simulated pulpal pressure. In-situ zymography was used to evaluate the influence of NTAP on the dentin-enzymatic activity. Non-thermal atmospheric plasma produced no remarkable topographical or chemical alterations at the dentin surface; only the amount of phosphate decreased following 10 s of treatment with NTAP. After 1 yr of direct water exposure, the µTBS of NTAP-treated specimens did not differ statistically significantly from that of untreated controls, whereas simulated pulpal pressure-aging resulted in a significantly higher µTBS for NTAP-treated dentin. The dentin-enzymatic activity appeared to be treatment-dependent, but the untreated controls showed more intense fluorescence within the hybrid layer. Scotchbond Universal maintained its µTBS strength after 1 yr of direct water exposure and simulated pulpal pressure, although remarkable statistical differences between treatments were observed depending on the aging condition.


Assuntos
Colagem Dentária , Adesivos Dentinários/química , Dentina/anatomia & histologia , Gases em Plasma/farmacologia , Dentina/química , Dentina/enzimologia , Humanos , Microscopia Eletrônica de Varredura , Dente Molar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...